
Year 11 AQA GCSE Biology

Revision Checklist

Use this booklet to help you with your revision in preparation for your GCSE Biology examinations.

This is the work that you will have covered by the end of year 11 from the GCSE Syllabus Examination How can you use this document to help you revise?

By looking at this document you can see the extent of the work that you need to fully cover and revise before you sit your GCSE examinations. This will then help you to track your progress through the year and also plan your revision for the summer examinations. Careful study and use of this document will ensure that you have sufficient time to cover all the work well before the exam.

BIOLOGY

Cell structure	\odot		\odot
Describe that plant and animal cells (eukaryotic cells) have a cell membrane, cytoplasm and genetic material enclosed in a nucleus.			
Structure of bacterial cells (prokaryotic cells)			
Be able to demonstrate an understanding of the scale and size of cells and be able to make order of magnitude calculations, including the use of standard form.			
Animal and plant cells			
Be able to explain how the main sub-cellular structures, in animal and plant cells and plasmids in bacterial cells are related to their functions.			
Be able to use estimations and explain what they should be used to judge the relative size or area of sub-cellular structures			
Cell specialisation	1	I	L
Be able to, when provided with appropriate information, explain how the structure of different types of cell relate to their function in a tissue, an organ or organ system, or the whole organism.			
Cell differentiation	•		
Explain the importance of cell differentiation.			
In mature animals, cell division is mainly restricted to repair and replacement.			
As a cell differentiates it acquires different sub-cellular structures to enable it to carry out a certain function. It has become a specialised cell			
Microscopy			
Understand how microscopy techniques have developed over time			
Explain how electron microscopy has increased understanding of sub- cellular structures. Differences in magnification and resolution			
Be able to carry out calculations involving magnification, real size and image size using the formula magnification = size of image size of real object			
Be able to express answers in standard form if appropriate			
Culturing microorganisms		I	
Bacteria multiply by simple cell division (binary fission).			
Bacteria can be grown in a nutrient broth solution or as colonies on an agar			
gel plate.			
Describe how to prepare an uncontaminated culture using aseptic			
technique.			
Be able to calculate cross-sectional areas of colonies or clear areas around colonies using πr^2 .			
Be able to calculate the number of bacteria in a population after a certain			
time if given the mean division time.			

Cell division		
Chromosomes		
The nucleus of a cell contains chromosomes made of DNA molecules. Each	T	
chromosome carries a large number of genes. In body cells the		
chromosomes are normally found in pairs		
Mitosis and the cell cycle	<u> </u>	
Be able to describe the stages of the cell cycle, including mitosis.		
During the cell cycle the genetic material is doubled and then divided into		
two identical cells		
Cell division by mitosis is important in the growth and development of		
multicellular organisms		
Be able to recognise and describe situations in given contexts where		
mitosis is occurring		
Stem cells	-	
A stem cell is an undifferentiated cell of an organism which is capable of		
giving rise to many more cells of the same type, and from which certain		
other cells can arise from differentiation.		
Be able to describe the function of stem cells in embryos, in adult animals		
and in the meristems in plants		
Explain how treatment with stem cells may be able to help conditions such		
as diabetes and paralysis		
Describe the role of stem cell in In therapeutic cloning		
Explain the potential risks and ethical concerns of using stem cells		
Explain how stem cells from meristems in plants can be used to produce		
clones of plants quickly and economically		
Transport in cells		
Diffusion		•
Substances may move into and out of cells across the cell membranes via diffusion.		
Know some of the substances transported in and out of cells by diffusion in		
named locations in animals and plants		
Be able to explain how factors affect the rate of diffusion.		
A single-celled organism has a relatively large surface area to volume ratio.		
This allows sufficient transport of molecules into and out of the cell to meet		
the needs of the organism.	<u> </u>	
Be able to calculate and compare surface area to volume ratios.		
Be able to explain the need for exchange surfaces and a transport system in multicellular organisms in terms of surface area to volume ratio		
Know how multicellular organisms, surfaces and organ systems are		
specialised for exchanging materials. This is to allow sufficient molecules to		
be transported into and out of cells for the organism's needs.		
Osmosis		
Water may move across cell membranes via osmosis. Osmosis is the		
diffusion of water from a dilute solution to a concentrated solution through		
a partially permeable membrane.		

Students should be able to:			
• use simple compound measures of rate of water uptake			
• use percentiles			
 calculate percentage gain and loss of mass of plant tissue 			
Be able to plot, draw and interpret appropriate graphs.			
Investigate the effect of a range of concentrations of salt or sugar solutions			
on the mass of plant tissue.			
Active transport			
Active transport moves substances from a more dilute solution to a more			
concentrated solution (against a concentration gradient). This requires			
energy from respiration.			
Active transport allows mineral ions to be absorbed into plant root hairs			
from very dilute solutions in the soil. Plants require ions for healthy growth.			
It also allows sugar molecules to be absorbed from lower concentrations in			
the gut into the blood which has a higher sugar concentration.			
Principles of organisation			
Understand that cells are the basic building blocks of all living organisms.			
A tissue is a group of cells with a similar structure and function.			
Organs are aggregations of tissues performing specific functions.			
Organs are organised into organ systems, which work together to form			
organisms.			
Students should be able to explain how the structures of plant tissues are			
related to their functions.			
Plant tissues include:epidermal tissues, palisade mesophyll, spongy			
mesophyll, xylem and phloem, meristem tissue found at the growing tips			
of shoots and roots.			
The leaf is a plant organ. Knowledge limited to epidermis, palisade and			
spongy mesophyll, xylem and phloem, and guard cells surrounding stomata.			
Students should be able to explain how the structure of root hair cells,			
xylem and phloem are adapted to their functions.			
Students should be able to explain the effect of changing temperature,			
humidity, air movement and light intensity on the rate of transpiration.			
Students should be able to understand and use simple compound measures			
such as the rate of transpiration.			
The roots, stem and leaves form a plant organ system for transport of substances around the plant			
substances around the plant.	<u> </u>		
Root hair cells are adapted for the efficient uptake of water by osmosis, and mineral ions by active transport.			
Students should be able to describe the process of transpiration and			
translocation, including the structure and function of the stomata.			
Xylem tissue transports water and mineral ions from the roots to the stems			
and leaves. It is composed of hollow tubes strengthened by lignin adapted			
for the transport of water in the transpiration stream.			
The role of stomata and guard cells are to control gas exchange and water			
loss.			
Phloem tissue transports dissolved sugars from the leaves to the rest of the			
	L	I	

plant for immediate use or storage. The movement of food molecules		
through phloem tissue is called translocation.		
Phloem is composed of tubes of elongated cells. Cell sap can move from		
one phloem cell to the next through pores in the end walls.		
Detailed structure of phloem tissue or the mechanism of transport is not		
required.		
Digestive enzymes convert food into small soluble molecules that can be		
absorbed into the bloodstream.		
Carbohydrases break down carbohydrates to simple sugars.		
Amylase is a carbohydrase which breaks down starch.		
Proteases break down proteins to amino acids.		
Lipases break down lipids (fats) to glycerol and fatty acids		
Bile is made in the liver and stored in the gall bladder. It is alkaline to		
neutralise hydrochloric acid from the stomach. It also emulsifies fat to form		
small droplets which increases the surface area. The alkaline conditions and		
large surface area increase the rate of fat breakdown by lipase		
Use qualitative reagents to test for a range of carbohydrates, lipids and		
proteins.		
To include: Benedict's test for sugars; iodine test for starch; and Biuret		
reagent for protein.		
Use a continuous sampling technique to determine the time taken to		
completely digest a starch solution at a range of pH values. Iodine reagent		
is to be used to test for starch every 30 seconds. Temperature must be		
controlled by use of a water bath or electric heater		
Metabolism		
Be able to explain the importance of sugars, amino acids, fatty acids and		
glycerol in the synthesis and breakdown of carbohydrates, proteins and		
lipids.		
Metabolism is the sum of all the reactions in a cell or the body.		
The energy transferred by respiration in cells is used by the organism for		
the continual enzyme controlled processes of metabolism that synthesise		
new molecules.		

Bioenergetics		
Photosynthesis		\odot
Photosynthesis is represented by the equation:		
carbon dioxide + water light glucose + oxygen		
Students should recognise the chemical symbols: CO2, H2O, O2 and		
С6Н12О6.		
Be able to describe photosynthesis as an endothermic reaction in which		
energy is transferred from the environment to the chloroplasts by light.		
Be able to explain the effects of temperature, light intensity, carbon dioxide		
concentration, and the amount of chlorophyll on the rate of photosynthesis		
and be able to calculate rates of photosynthesis using data		

	I
Explain how these factors interact and any one of them may be the factor	
that limits photosynthesis.	
(HT only) Students should be able to explain graphs of photosynthesis rate	
involving two or three factors and decide which is the limiting factor.	
Understand and use inverse proportion – the inverse square law and light	
intensity in the context of photosynthesis.	
Limiting factors are important in the economics of enhancing the conditions	
in greenhouses to gain the maximum rate of photosynthesis while still	
maintaining profit	
Investigate the effect of light intensity on the rate of photosynthesis using an	
aquatic organism such as pondweed	
Uses of glucose from photosynthesis	
Plant defence responses	· · · · · ·
Be able to describe physical and chemical plant defence responses.	
Know how to detect and identify plant diseases	
Describe how plants can be infected by a range of viral, bacterial and fungal	
pathogens as well as by insects.	
Knowledge of plant diseases is restricted to tobacco mosaic virus as a viral	
disease, black spot as a fungal disease and aphids as insects.	
Plants can be damaged by a range of ion deficiency conditions:	
Respiration	
Aerobic and anaerobic respiration	
Be able to describe cellular respiration as an exothermic reaction which is	
continuously occurring in living cells and supplies all the energy needed for	
living processes.	
Respiration in cells can take place aerobically (using oxygen) or anaerobically	
(without oxygen), to transfer energy and should know the differences	
between them.	
Know the equations for aerobic and anaerobic respiration	
Anaerobic respiration in yeast cells is called fermentation and has economic	
importance in the manufacture of bread and alcoholic drinks.	
Response to exercise	
Describe and explain how the human body reacts to the increased demand	
for energy during exercise including the effects of anaerobic respiration in	
muscles	
Blood flowing through the muscles transports the lactic acid to the liver	
where it is converted back into glucose. Oxygen debt is the amount of extra	
oxygen the body needs after exercise to react with the accumulated	
The heart and blood vessels	
Know the structure and functioning of the human heart and lungs, including	
how lungs are adapted for gaseous exchange.	
Know the role of pacemaker and how artificial pacemakers are used to	
correct irregularities in the heart rate.	
The body contains three dittorent types of blood yessely	
The body contains three different types of blood vessel: Be able to explain how the structure of these vessels relates to their	

functions.		
Be able to use simple compound measures such as rate and carry out rate		
calculations for blood flow.		
Blood		
Describe and explain the structure and function of the different parts of blood		
tissue		
Be able to recognise different types of blood cells in a photograph or diagram,		
and explain how they are adapted to their functions.		
Coronary heart disease: a non-communicable disease		
Describe the main features and treatments of coronary heart disease, and		
evaluate their effectiveness		
Understand the consequences and treatments of faulty heart valves.		
Know artificial hearts are occasionally used to keep patients alive whilst		
waiting for a heart transplant, or to allow the heart to rest as an aid to		
recovery.		
Health issues		
Be able to describe the relationship between health and disease and the		
interactions between different types of disease.		
Diseases, both communicable and non-communicable, are major causes of ill		
health. Other factors including diet, stress and life situations may have a		
profound effect on both physical and mental health.		
Be able to translate disease incidence information between graphical and		
numerical forms, construct and interpret frequency tables and diagrams, bar		
charts and histograms, and use a scatter diagram to identify a correlation		
between two variable		
Understand the principles of sampling as applied to scientific data, including		
epidemiological data.		
The effect of lifestyle on some non-communicable diseases		
Discuss the human and financial cost of these non-communicable diseases to		
an individual, a local community, a nation or globally • explain the effect of		
lifestyle factors including diet, alcohol and smoking on the incidence of non-		
communicable diseases at local, national and global levels.		
Know various risk factors are linked to an increased rate of a disease. Many		
diseases are caused by the interaction of a number of factors		
Be able to understand the principles of sampling as applied to scientific data		
in terms of risk factors		
Be able to translate information between graphical and numerical forms; and		
extract and interpret information from charts, graphs and tables in terms of		
risk factors.		
Be able to use a scatter diagram to identify a correlation between two		
variables in terms of risk factors.		
Cancer		
Be able to describe cancer as the result of changes in cells that lead to		
uncontrolled growth and division.		
Know the features and differences of benign and malignant tumours		

	<u> </u>	
There are also genetic risk factors for some cancers.		
Communicable diseases		
Be able to explain how diseases caused by viruses, bacteria, protists and fungi		
are spread in animals and plants. Students should be able to explain how the		
spread of diseases can be reduced or prevented.		
Viral diseases		
Viruses live and reproduce inside cells, causing cell damage.		
Measles HIV Tobacco mosaic virus (TMV)		
Bacterial diseases		
Bacteria may produce poisons (toxins) that damage tissues and make us feel		
ill.		
Salmonella Gonorrhoea		
Fungal diseases		
Rose black spot		
Protist disease	ıI	
The pathogens that cause malaria are protists.		
Human defence system	<u> </u>	
Be able to describe the non-specific defence systems of the human body		
against pathogens,		
Be able to explain the role of the immune system in the defence against		
disease.		
Vaccination	11	
Be able to explain how vaccination will prevent illness in an individual, and		
how the spread of pathogens can be reduced by immunising a large		
proportion of the population.		
Describe and explain how vaccinations work to provide immunity		
Antibiotics and painkillers		•
Be able to explain the use of antibiotics and other medicines in treating		
disease		
Antibiotics, such as penicillin, are medicines that help to cure bacterial		
disease by killing infective bacteria inside the body. It is important that		
specific bacteria should be treated by specific antibiotics		
The use of antibiotics has greatly reduced deaths from infectious bacterial		
diseases. However, the emergence of strains resistant to antibiotics is of great		
concern.		
Know that antibiotics cannot kill viral pathogens.		
Know that painkillers and other medicines are used to treat the symptoms of		
disease but do not kill pathogens.		
Describe how it is difficult to develop drugs that kill viruses without also		
damaging the body's tissues		
Discovery and development of drug	,	_
Be able to describe the process of discovery and development of potential		
new medicines, including preclinical and clinical testing.		
Traditionally drugs were extracted from plants and microorganisms.		

• The heart drug digitalis originates from foxgloves.	
• The painkiller aspirin originates from willow.	
• Penicillin was discovered by Alexander Fleming from the Penicillium mould.	
Know that most new drugs are synthesised by chemists in the pharmaceutical	
industry.	
Describe how new medical drugs have to be tested and trialled before being	
used to check that they are safe and effective.	
Preclinical and clinical trials check the effectiveness and safety of a drug	
Monoclonal antibodies	
Be able to describe how monoclonal antibodies are produced.	
Be able to describe some of the ways in which monoclonal antibodies can be	
used e.g. in pregnancy test and treating cancer	
Homeostasis and response	
Be able to explain that homeostasis is the regulation of the internal conditions	
of a cell or organism to maintain optimum conditions for function in response	
to internal and external changes.	
In the human body, these include control of: • blood glucose concentration •	
body temperature • water levels.	
All control systems include:	
 cells called receptors, which detect stimuli (changes in the environment) 	
 coordination centres (such as the brain, spinal cord and pancreas) that 	
receive and process information from receptors	
• effectors, muscles or glands, which bring about responses which restore	
optimum levels.	
The human nervous system	
Be able to explain how the structure of the nervous system is adapted to its	
functions.	
Information from receptors passes along cells (neurones) as electrical	
impulses to the central nervous system (CNS).	
The CNS is the brain and spinal cord.	
Be able to explain how the various structures in a reflex arc – including the	
sensory neurone, synapse, relay neurone and motor neurone – relate to their	
function.	
Understand why reflex actions are important.	
Be able to extract and interpret data from graphs, charts and tables, about	
the functioning of the nervous system	
Be able to translate information about reaction times between numerical and	
graphical forms.	
The brain	
Be able to identify the cerebral cortex, cerebellum and medulla on a diagram	
of the brain, and describe their functions.	
Be able to explain some of the difficulties of investigating brain function and	
treating brain damage and disease.	
Know how neuroscientists have been able to map the regions of the brain	
know now neurosciencists have been able to map the regions of the brain	

The eye	
Be able to relate the structures of the eye to their functions.	
Be able to identify the following structures on a diagram of the eye and	
explain how their structure is related to their function: • retina • optic nerve •	
sclera • cornea • iris • ciliary muscles • suspensory ligaments.	
Know that accommodation is the process of changing the shape of the lens to	
focus on near or distant objects.	
Describe how two common defects of the eyes are myopia (short	
sightedness) and hyperopia (long sightedness) in which rays of light do not	
focus on the retina, how they are treated	
Be able to interpret ray diagrams, showing these two common defects of the	
eye and demonstrate how spectacle lenses correct them.	
Control of body temperature	
Describe how body temperature is monitored and controlled by the	
thermoregulatory centre in the brain.	
Describe how the skin contains temperature receptors and sends nervous	
impulses to the thermoregulatory centre.	
Be able to explain how mechanisms lower or raise body temperature in a	
given context	
Plant hormones	
Be able to explain plants produce hormones to coordinate and control growth	
and responses to light (phototropism) and gravity (gravitropism or	
geotropism).	
Describe how unequal distributions of auxin cause unequal growth rates in	
plant roots and shoots.	
Know that gibberellins are important in initiating seed germination.	
Know that ethene controls cell division and ripening of fruits	
Use of plant hormones	
Be able to describe the effects of some plant hormones and the different	
ways people use them to control plant growth. Plant growth hormones are	
used in agriculture and horticulture.	
Hormonal coordination in humans	
Human endocrine system	
Be able to describe the principles of hormonal coordination and control by	
the human endocrine system	
Describe that the endocrine system is composed of glands which secrete	
chemicals called hormones directly into the bloodstream. The blood carries	
the hormone to a target organ where it produces an effect.	
Compared to the nervous system the effects are slower but act for longer.	
The pituitary gland in the brain is a 'master gland' which secretes several	
hormones into the blood in response to body conditions. These hormones in	
turn act on other glands to stimulate other hormones to be released to bring	
about effects	
Be able to identify the position of the following on a diagram of the human	
body: • pituitary gland • pancreas • thyroid • adrenal gland • ovary • testes.	

Control of blood glucose concentration		
Blood glucose concentration is monitored and controlled by the pancreas. If		
the blood glucose concentration is too high, the pancreas produces the		
hormone insulin that causes glucose to move from the blood into the cells.		
Be able to explain how insulin controls blood glucose (sugar) levels in the		
body.		
Describe the causes and effects of Type 1 and Type 2 diabetes and how to		
treat them		
Be able to extract information and interpret data from graphs that show the		
effect of insulin in blood glucose levels in both people with diabetes and		
people without diabetes		
	<u> </u>	
Describe the role of glucagon when blood glucose concentration is too low,		
which causes glycogen to be converted into glucose and released into the		
blood.		
Be able to explain how glucagon interacts with insulin in a negative feedback		
cycle to control blood glucose (sugar) levels in the body.		
Maintaining water and nitrogen balance in the body	,	
Be able to explain the effect on cells of osmotic changes in body fluids.		_
Describe where and how water is lost from the body		
There is no control over water, ion or urea loss by the lungs or skin.		
Excess water, ions and urea are removed via the kidneys in the urine. If body		
cells loose or gain too much water by osmosis they do not function efficiently		
The digestion of proteins from the diet results in excess amino acids which		
need to be excreted safely.		
In the liver these amino acids are deaminated to form ammonia. Ammonia is		
toxic and so it is immediately converted to urea for safe excretion.		
Be able to describe the function of kidneys in maintaining the water balance		
of the body. The kidneys produce urine by filtration of the blood and selective		
reabsorption of useful substances such as glucose, some ions and water.		
Be able to translate tables and bar charts of glucose, ions and urea before and		
after filtration.		
Be able to describe the effect of ADH on the permeability of the kidney		
tubules.		
The water level in the body is controlled by the hormone ADH which acts on		
the kidney tubules.		
This is controlled by negative feedback.		
People who suffer from kidney failure may be treated by organ transplant or		
by using kidney dialysis.		
Know the basic principles of dialysis.		
Be able to explain the roles of thyroxine and adrenaline in the body.		
Hormones in human reproduction	<u>I I</u>	
Describe role of hormones in human reproduction, including the menstrual		
cycle.		
During puberty reproductive hormones cause secondary sex characteristics to		
develop.		
		1
Oestrogen is the main female reproductive hormone produced in the ovary.		

At subarty ages begin to mature and one is released approximately every 29		
At puberty eggs begin to mature and one is released approximately every 28 days. This is called ovulation.		
Testosterone is the main male reproductive hormone produced by the testes		
and it stimulates sperm production.		
Be able to explain the interactions of FSH, oestrogen, LH and progesterone, in		
the control of the menstrual cycle.		
Be able to extract and interpret data from graphs showing hormone levels		
during the menstrual cycle.		
Be able to evaluate the different hormonal and non-hormonal methods of		
contraception.		
Be able to explain the use of hormones in modern reproductive technologies to treat infertility.		
Describe In Vitro Fertilisation (IVF) treatment and the advantages and		
disadvantages of this		
Inheritance, variation and evolution		
Reproduction	<u> </u>	
Understand that meiosis leads to non-identical cells being formed while		
mitosis leads to identical cells being formed.		
Sexual reproduction involves the joining (fusion) of male and female gametes:		
In sexual reproduction there is mixing of genetic information which leads to		
variety in the offspring. The formation of gametes involves meiosis.		
Asexual reproduction involves only one parent and no fusion of gametes.		
There is no mixing of genetic information. This leads to genetically identical		
offspring (clones). Only mitosis is involved.		
Explain how meiosis halves the number of chromosomes in gametes and		
fertilisation restores the full number of chromosomes.		
Know that when a cell divides to form gametes:		
 copies of the genetic information are made 		
 the cell divides twice to form four gametes, each with a single set of 		
chromosomes		
 all gametes are genetically different from each other. 		
Gametes join at fertilisation to restore the normal number of chromosomes.		
Describe how the new cell divides by mitosis. The number of cells increases.		
As the embryo develops cells differentiate.		
Explain the advantages of sexual and asexual reproduction:		
Some organisms reproduce by both methods depending on circumstances.		
DNA and the genome		
Be able to describe the structure of DNA and define genome.		
Know that a gene is a small section of DNA on a chromosome.		
Each gene codes for a particular sequence of amino acids, to make a specific		
protein.		
Be able to explain that the genome of an organism is the entire genetic		
material of that organism. The whole human genome has now been studied		
and this will have great importance for medicine in the future.		
Be able to discuss the importance of understanding the human genome.		
Be able to explain that a sequence of three bases is the code for a particular		
· · ·	, , , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·

Be able to carry out a genetic cross to show sex inheritance.		
Understand and use direct proportion and simple ratios in genetic crosses.		
Variation and evolution		
Be able to describe simply how the genome and its interaction with the		
environment influence the development of the phenotype of an organism.		
Describe differences in the characteristics of individuals in a population is		
called variation and may be due to differences in genes and environment		
Recall that all variants arise from mutations and that: most have no effect on		
the phenotype; some influence phenotype; very few determine phenotype.		
Describe how mutations occur continuously. Very rarely a mutation will lead		
to a new phenotype.		
Be able to describe evolution as a change in the inherited characteristics of a		
population over time through a process of natural selection which may result		
in the formation of a new species.		
The theory of evolution by natural selection states that all species of living		
things have evolved from simple life forms that first developed more than		
three billion years ago.		
Be able to explain how evolution occurs through natural selection of variants		
that give rise to phenotypes best suited to their environment.		
Be able to explain if two populations of one species become so different in		
phenotype that they can no longer interbreed to produce fertile offspring		
they have formed two new species.		
Be able to explain the impact of selective breeding of food plants and		
domesticated animals and has been carried out for thousands of years by		
humans		
Describe how selective breeding involves choosing parents with the desired		
characteristic from a mixed population. They are bred together.		
Describe how selective breeding can lead to 'inbreeding' where some breeds		
are particularly prone to disease or inherited defects		
Genetic engineering		
Be able to describe genetic engineering as a process which involves modifying		
the genome of an organism by introducing a gene from another organism to		
give a desired characteristic.		
Examples of genetic engineering include introducing resistance to diseases,		
producing bigger crops and making bacteria make useful materials such as		
insulin		
Be able to explain the potential benefits and risks of genetic engineering in		
agriculture and in medicine and that some people have objections.		
Be able to explain that crops that have had their genes modified in this way		
are called genetically modified (GM) crops. Some people are concerned about		
detrimental effects on natural populations of organisms		
Modern medical research is exploring the possibility of genetic modification		
to overcome some inherited disorders.		
(HT only) Be able to describe the main steps in the process of genetic		
engineering.		
Explain the methods and role of tissue culture and cuttings, to increase plant		

numbers		
Explain the process of embryo transplant as a means of cloning animals		
Explain adult cell cloning using nuclear transfer		
Theory of evolution		
	1	
Darwin published his ideas in On the Origin of Species (1859).		
There was much controversy surrounding these revolutionary new ideas.		
Explain the reasons why the theory of evolution by natural selection was only		
gradually accepted		
Describe other theories, including that of Jean-Baptiste Lamarck		
Describe the work of Darwin and Wallace in the development of the theory of		
evolution by natural selection		
Explain the impact of these ideas on biology.		
Alfred Russel Wallace independently proposed the theory of evolution by		
natural selection.		
Wallace worked worldwide gathering evidence for evolutionary theory. He is		
best known for his work on warning colouration in animals and his theory of		
speciation.		
Alfred Wallace did much pioneering work on speciation but more evidence		
over time has led to our current understanding of the theory of speciation.		
Be able to describe the steps which give rise to new species.		
Describe the development of our understanding of genetics including the		
work of Mendel		
Understand why the importance of Mendel's discovery was not recognised		
until after his death.		
In the late 19th Century behaviour of chromosomes during cell division was		
observed.		
In the early 20th Century it was observed that chromosomes and Mendel's		
'units' behaved in similar ways. This led to the idea that the 'units', now called		
genes, were located on chromosomes.		
This scientific work by many scientists led to the gene theory being		
developed		
Be able to describe the evidence for evolution including fossils and antibiotic		
resistance in bacteria.		
Explain the evidence for Darwin's theory is now available as it has been		
shown that characteristics are passed on to offspring in genes.		
Explain that fossils are the 'remains' of organisms from millions of years ago,		
which are found in rocks.		
Explain how fossils may be formed:		
Explain why fossil record is an incomplete history of the species on earth		
Describe what we can learn from fossils how much or how little different		
organisms have changed as life developed on Earth.		
Be able to extract and interpret information from charts, graphs and tables		
such as evolutionary trees.		
Explain why species extinctions occur		
Explain why bacteria can evolve rapidly because they reproduce at a fast rate.		
Explain how mutations of bacterial pathogens produce new strains which can		

develop antibiotic resistance such as MRSA.		
Describe the methods to reduce the rate of development of antibiotic		
resistant strains:		
The development of new antibiotics is costly and slow. It is unlikely to keep up		
with the emergence of new resistant strains.		
Classification of living organisms	l	
Traditionally living things have been classified into groups depending on their		
structure and characteristics in a system developed by Carl Linnaeus.		
Linnaeus classified living things into kingdom, phylum, class, order, family,		
genus and species. Organisms are named by the binomial system of genus		
and species.		
Be able to use information given to show understanding of the Linnaean		
system.		
Be able to describe the impact of developments in biology on classification	-	
systems.		
Explain how evidence of internal structures became more developed due to	1	1
improvements in microscopes, and the understanding of biochemical processes		
progressed, so, new models of classification were proposed.		
Due to evidence available from chemical analysis there is now a 'three-domain		
system' developed by Carl Woese.		
Evolutionary trees are a method used by scientists to show how they believe		
organisms are related. They use current classification data for living organisms		
and fossil data for extinct organisms.		
Adaptations, interdependence and competition		
Be able to describe different levels of organisation in an ecosystem from		
individual organisms to the whole ecosystem		
Be able to describe the importance of interdependence and competition in a		
community.		
Suggest the factors for which organisms are competing in a given habitat		
Suggest how organisms are adapted to the conditions in which they live.		
An ecosystem is the interaction of a community of living organisms (biotic) with		
the non-living (abiotic) parts of their environment		
To survive and reproduce, organisms require a supply of materials from their		
surroundings and from the other living organisms there.		
Plants in a community or habitat often compete with each other for light and		
space, and for water and mineral ions from the soil.		
Explain how animals often compete with each other for food, mates and territory.		
Explain how within a community each species is interdependent on the others.	_	
A stable community is one where all the species and environmental factors are		
in balance so that population sizes remain fairly constant		
Be able to extract and interpret information from charts, graphs and tables	+	1
		1
relating to the interaction of organisms within a community		
relating to the interaction of organisms within a community Abiotic factors		
relating to the interaction of organisms within a community	<u> </u>	

Biotic factors		
	$\left \right $	
Be able to explain what a biotic factor is and how one might affect a given		
community given appropriate data or context.	<u>├</u>	
Be able to extract and interpret information from charts, graphs and tables		
relating to the effect of biotic factors on organisms within a community.		
Adaptations		
Be able to explain how organisms are adapted to live in their natural		
environment, given appropriate information.		
Organisms have features (adaptations) that enable them to survive in the		
conditions in which they normally live. These adaptations may be structural,		
behavioural or functional		
Explain that some organisms live in environments that are very extreme and		
these organisms are called extremophiles e.g. bacteria living in deep sea vents		
Organisation of an ecosystem		
Understand that photosynthetic organisms are the producers of biomass for life		
on Earth.		
Feeding relationships within a community can be represented by food chains.		
A range of experimental methods using transects and quadrats are used by		
ecologists to determine the distribution and abundance of species in an		
ecosystem.		
In relation to abundance of organisms students should be able to:		
 understand the terms mean, mode and median 		
calculate arithmetic means		
 plot and draw appropriate graphs selecting appropriate scales for axes. 		
Producers are eaten by primary consumers, which in turn may be eaten by		
secondary consumers and then tertiary consumers.		
Consumers that kill and eat other animals are predators, and those eaten are		
prey. In a stable community the numbers of predators and prey rise and fall in		
cycles.		
Be able to interpret graphs used to model these cycles.		
How materials are cycled		
Recall that many different materials cycle through the abiotic and biotic		
components of an ecosystem		
Explain the importance of the carbon and water cycles to living organisms.		
Explain that all materials in the living world are recycled to provide the building		
blocks for future organisms		
Describe and explain the events of the carbon cycle.		
Describe and explain the events of the water cycle		
Be able to explain the role of microorganisms in cycling materials through an		
ecosystem by returning carbon to the atmosphere as carbon dioxide and		
mineral ions to the soil.		
Decomposition		
Be able to explain how temperature, water and availability of oxygen affect the		
rate of decay of biological material		
Be able to:		

 calculate rate changes in the decay of biological material 		
 translate information between numerical and graphical form 		
 plot and draw graphs selecting appropriate scales for the axes. 		
Explain how gardeners and farmers try to provide optimum conditions for rapid		
decay of waste biological material. The compost produced is used as a natural		
fertiliser for growing garden plants or crops.		
Anaerobic decay produces methane gas. Biogas generators can be used to		
produce methane gas as a fuel.		
Investigate the effect of temperature on the rate of decay of fresh milk by		
measuring pH change.		
Impact of environmental change		
Be able to evaluate the impact of environmental changes on the distribution of		
species in an ecosystem given appropriate information.		
Explain how environmental changes affect the distribution of species in an		
ecosystem.		
Trophic levels in an ecosystem		
Be able to describe the differences between the trophic levels of organisms		
within an ecosystem.		
Trophic levels can be represented by numbers, starting at level 1 with plants		
and algae. Further trophic levels are numbered subsequently according to how		
far the organism is along the food chain.		
Apex predators are carnivores with no predators.		
How decomposers break down dead plant and animal matter		
Pyramids of biomass can be constructed to		
represent the relative amount of biomass in Level 4 each		
level of a food chain. Trophic level 1 is		
at the bottom of the pyramid.		
Be able to construct accurate pyramids of biomass from appropriate data.		
Transfer of biomass		
Describe pyramids of biomass		
Explain how biomass is lost between the different trophic levels.		
Producers are mostly plants and algae which transfer about 1% of the incident		
energy from light for photosynthesis		
Explain why only approximately 10% of the biomass from each trophic level is		
transferred to the level above it.		
Be able to calculate the efficiency of biomass transfers between trophic levels		
by percentages or fractions of mass.		
Be able to explain how this affects the number of organisms at each trophic		
level.		
Biodiversity and the effect of human interaction on ecosystems		
Biodiversity is the variety of all the different species of organisms on earth, or		
within an ecosystem.		
A great biodiversity ensures the stability of ecosystems by reducing the		
dependence of one species on another for food, shelter and the maintenance		
of the physical environment.		

The future of the human species on Earth relies on us maintaining a good level			
of biodiversity. Many human activities are reducing and only recently have			
measures been taken to try to stop this reduction.			
Explain how rapid growth in the human population and an increase in the			
standard of living mean that increasingly more resources are used and more			
waste is produced.			
Causes of pollution			
Explain how humans reduce the amount of land available for other animals and			
plants by building, quarrying, farming and dumping waste.			
The impact of the destruction of peat bogs			
Large-scale deforestation in tropical areas has occurred to:			
 provide land for cattle and rice fields 			
• grow crops for biofuels			
Students should be able to describe some of the biological consequences of			
global warming			
Be able to describe both positive and negative human interactions in an			
ecosystem and explain their impact on biodiversity.			
Scientists and concerned citizens have put in place programmes to reduce the			
negative effects of humans on ecosystems and biodiversity.			
Factors affecting food security			
Describe some of the biological factors affecting levels of food security.			
Food security is having enough food to feed a population.			
Sustainable methods must be found to feed all people on Earth.			
Farming techniques			
Explain how the efficiency of food production can be improved by restricting			
energy transfer from food animals to the environment.			
Explain that fish stocks in the oceans are declining.			
Describe important methods to maintain fish stocks at a level where breeding			
continues or certain species may disappear altogether in some areas.			
Be able to describe and explain some possible biotechnical and agricultural			
solutions, including genetic modification, to the demands of the growing human			
population.			
Modern biotechnology techniques enable large quantities of microorganisms to			
be cultured for food.			
The fungus Fusarium is useful for producing mycoprotein, a protein rich food			$\left \right $
suitable for vegetarians.			
A genetically modified bacterium produces human insulin. When harvested and			
purified this is used to treat people with diabetes.			
GM crops could provide more food or food with an improved nutritional value			
such as golden rice.			
		L	

Required Practicals

	Activity
1	Use a light microscope to observe, draw and label a selection of plant and animal cells
2	Investigate the effect of antiseptics or antibiotics on bacterial growth using agar plates and measuring zones of inhibition.
3	Investigate the effect of a range of concentrations of salt or sugar solutions on the mass of plant tissue.
4	Use qualitative reagents to test for a range of carbohydrates, lipids and proteins. To include: Benedict's test for sugars; iodine test for starch; and Biuret reagent for protein.
5	Investigate the effect of pH on the rate of reaction of amylase enzyme
6	Investigate the effect of light intensity on the rate of photosynthesis using an aquatic organism such as pondweed.
7	Plan and carry out an investigation into the effect of a factor on human reaction time.
8	Investigate the effect of light or gravity on the growth of newly germinated seedlings.
9	Measure the population size of a common species in a habitat. Use sampling techniques to investigate the effect of a factor on the distribution of this species
10	Investigate the effect of temperature on the rate of decay of fresh milk by measuring pH change.